Chaotic Polynomial Automorphisms; counterexamples to several conjectures
نویسندگان
چکیده
We give a polynomial counterexample to a discrete version of the Markus-Yamabe Conjecture and a conjecture of Deng, Meisters and Zampieri, asserting that if F : C → C is a polynomial map with det(JF ) ∈ C∗, then for all λ ∈ R large enough λF is global analytic linearizable. These counterexamples hold in any dimension ≥ 4.
منابع مشابه
COUNTEREXAMPLES IN CHAOTIC GENERALIZED SHIFTS
In the following text for arbitrary $X$ with at least two elements, nonempty countable set $Gamma$ we make a comparative study on the collection of generalized shift dynamical systems like $(X^Gamma,sigma_varphi)$ where $varphi:GammatoGamma$ is an arbitrary self-map. We pay attention to sub-systems and combinations of generalized shifts with counterexamples regarding Devaney, exact Dev...
متن کاملCounterexamples to witness conjectures
Consider the class of exp-log constants, which is constructed from the integers using the field operations, exponentiation and logarithm. Let z be such an exp-log constant and let n be its size as an expression. Witness conjectures attempt to give bounds $(n) for the number of decimal digits which need to be evaluated in order to test whether z equals zero. For this purpose, it is convenient to...
متن کاملPolynomial Automorphisms and the Jacobian Conjecture
In this paper we give an update survey of the most important results concerning the Jacobian conjecture: several equivalent descriptions are given and various related conjectures are discussed. At the end of the paper, we discuss the recent counter-examples, in all dimensions greater than two, to the Markus-Yamabe conjecture (Global asymptotic Jacobian conjecture). Résumé Dans ce papier nous pr...
متن کاملThe Tame and the Wild Automorphisms of Polynomial Rings in Three Variables
Let C = F [x1, x2, . . . , xn] be the polynomial ring in the variables x1, x2, . . . , xn over a field F , and let AutC be the group of automorphisms of C as an algebra over F . An automorphism τ ∈ AutC is called elementary if it has a form τ : (x1, . . . , xi−1, xi, xi+1, . . . , xn) 7→ (x1, . . . , xi−1, αxi + f, xi+1, . . . , xn), where 0 6= α ∈ F, f ∈ F [x1, . . . , xi−1, xi+1, . . . , xn]....
متن کاملModel Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کامل